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Waves in strongly magnetized relativistic plasmas: Generally covariant approach
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A dispersion relation for long waves in strongly magnetized multifluid plasma in a curved spacetime is
derived in a covariant form. A generally covariant form for the ray equations is obtained. The results are
applicable to ray propagation in relativistic plasmas in the vicinity of strongly gravitating~black holes! or
rapidly rotating~pulsars! systems.
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Relativistic plasma in a superstrong magnetic field is
feature of a number of high-energy astrophysical syste
including pulsars and black hole magnetospheres. Such
tems also typically have rapid rotation and strong grav
tional fields. In these cases, the use of a general relativ
approach is either mandatory~as near the black holes! or at
least useful in the case in which the field pattern in the pu
magnetosphere is assumed stationary in the rotating fra
The generation of plasma turbulence, the emission of ra
waves, and the propagation of radio waves and other l
frequency disturbances through the magnetosphere are
ally treated with no clear distinction made between the n
inertial ~corotating! frame and the inertial frames fixed to th
star or to the observer. In this approach, it is implicitly a
sumed that wave solutions have the dependence exp(2ivt)
in all frames, although this is, strictly speaking, incorrect
the observer’s frame where the parameters of the amb
medium depend on time. The dispersion relation for e
natural wave mode of the system is obtained by using
appropriate model for the waves. The long-wavelen
~wavelength much larger than the particle gyroradius! low-
frequency~frequency much smaller than the gyrofrequenc!
limit suffices for most purposes, and the usual approach i
use a kinetic equation in the plasma or pulsar frame@1–4#.
The standard WKB approach uses the eikonal expan
where all perturbations}exp(iS/h), h;l/L;1/vT being a
small parameter (l is the typical wavelength,L is the typical
inhomogeneity scale, andT is the typical time scale of non
stationarity!. The lowest order gives the dispersion relatio
which in the 311 method@5# is solved for the frequencyv
5v(k,r ,t), with the dependence onr and t being due to
inhomogeneity and time dependence of the system, bot
which are necessarily present in the presence of rotation
a gravitational field. The four-dimensional dispersion relat
in a local inertial frame can be written in the formD(k,x)
50, where D is a Lorentz invariant andk5(v/c,k), x
5(ct,r ) are 4-vectors@6#. Hereka5]S/]xa. Further consid-
eration of the wave propagation within the geometrical o
tics approach also requires careful treatment of the differe
between the inertial nonrotating frame and the noniner
rotating frame. In the former, the time dependence of
background density and fields requires use of the comp
set of the geometrical optics equation wherev5v(k,r ,t).
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This was recognized by Barnard and Arons@7# but after-
wards consistently ignored in the studies of ray propaga
~see also Petrova and Lyubarskii@8# and references therein!.
In the pulsar frame, the parameters of the plasma depen
f2Vt, wheref is the azimuthal angle about the rotatio
axis andV is the angular velocity. A time derivative is the
of the form (]/]t);(Vr )¹, and the effects of time depen
dence may be significant. One way to treat this probl
would be to consider it in the rotating frame where the ba
ground parameters are time-independent. However,
frame is noninertial and formally this needs to be taken i
account through the metric tensor. The metric tensor can
approximated by its flat-space form only forVr !1 ~here
and hereafter the light velocityc[1 for convenience!, and
this factor varies fromVr;1024/P near the surface of a
neutron star rotating with periodP (1023&P&1s) to unity
at the light cylinder.

In general, gravitating and/noninertial systems should
described within the covariant approach of general relativ
Derivation of the response tensor of the plasma is w
established in the special relativity~see, e.g., Melrose@6# and
references therein! within the kinetic approach. It involves
writing the linear response of the plasma in terms of
~Fourier-transformed! 4-current j a(k) in terms of the
4-potential,Aa(k): j a(k)5Pab(k)Ab(k). Here indices span
the range 0–3, with the metric tensorgab5diag(1,21,21,
21) in flat space time. Upon substituting the current in
Maxwell equations, one arrives at the equation of the k
DabA

b50, whereDab5gabk
22kakb24pPab . The tensor

Pab(k) satisfiying kaPab(k)505kbPab(k) @charge conti-
nuity kaj a(k)50 and gauge invariance#, and the determinan
of Dab is identically zero. A covariant form,D(k)50, of the
dispersion equation is found by noting that the matrix
cofactors ofDab is of the formD(k)kakb. An alternative way
~used below! is to construct invariant combinations by pro
jecting onto a set of independent vectors. This theory rep
duces the conventional plasma dispersion theory in any
cific inertial frame.

Generally relativistic analysis usually requires determin
tion of wave properties in a frame that is not necessa
~locally! inertial and is less elaborate. Breuer and Ehlers@9#
outlined the derivation of the dispersion relation in the si
plest case of a cold electron plasma. However, no clo
©2001 The American Physical Society01-1
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expression for the dispersion relation was provided t
could be useful for applications, and too severe restricti
were imposed in the course of the derivation~such as the
absence of ion current!. Gedalin and Oiberman@10# analyzed
magnetohydrodynamical waves in a curved space time.
sässer and Popel@11# derived a local dispersion relation for
nonmagnetized plasma in the 311 form using a covarian
approach. Generally covariant geometrical optics has b
developed for the ray propagation in the vacuum~see, e.g.,
Stephani@12#! and in a formal way for gravitational an
sound waves@13#. In the present paper, we present a conc
derivation of the dispersion relation for a strongly magn
tized multifluid plasma and a general relativistic formalis
for the geometric optics treatment of the propagation
waves in an arbitrary medium, with a particular applicati
to rapidly rotating systems.

We start with the decomposition of the Maxwell tens
Let Ua be a global unit timelike vector~4-velocity!: UaUa
51. Then one can splitFab for the background system int
the electric and magnetic fields as follows@10#:

Ea5FabUb , Ba5eabcdFbcUd , ~1!

Fab5~EaUb2EbUa!1
1

2
eabcd~UcBd2UdBc!, ~2!

where eabcd is the completely antisymmetric tensor,e0123

5Augu. We call the plasma magnetized if there existsUa

such thatEa[0. This condition may be fulfilled only in par
of the space. It is worth mentioning that, in general,Ua does
not have to coincide with the plasma velocity~cf. Breuer and
Ehlers @9# and Gedalin and Oiberman@10#!. For conve-
nience, we define the unit vectorba5Ba/A2BaBa with
baba521.

Dispersion theory in a multifluid plasma hydrodynami
model can be treated in the following generally covaria
manner. The equations for the plasma dynamics are

~nsus
a! ;a50, Ts;b

ab 5qsusbF
ab, ~3!

edabcFab,c50, F ;b
ab524p j a, ~4!

j a5(
s

qsnsus
a , ~5!

wheres denotes plasma species and a semicolon stand
the covariant derivative. The energy-momentum tensor o
ideal fluid is Tab5(e1p)uaub2pgab. The set ~3!–~5!
should be completed with the equation of state. In what
lows, we assume the adiabatic state equation withp5p(n)
andde5@(e1p)/n#dn.

The above equations describe global plasma flow~wind,
accretion flow! as well as waves. Let the waves be describ
in terms of perturbed quantitiesdn, dua, dFab. In what fol-
lows, we consider the perturbations in the WKB limit, that
the wavelength is assumed to be much smaller than the
cal length of the inhomogeneity, including variations of t
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metric tensorgab . Thus in the equations for perturbation
covariant derivatives can be replaced by ordinary partial
rivatives.

Using the usual WKB technique, we assume that all va
ables}exp(iS/h) with S,a[ka , kbka,b!ka , and the pres-
ence of the small parameterh!1 ensures the usual eikona
expansion. Then the equations for the perturbations take
following form in the lowest order~we omit subscripts for
convenience!:

ka~dnua1ndua!50, ~6!

ikbdTab5q~dubFab1ubdFab!, ~7!

dTab5S e1p

n
1c2D dnuaub1~e1p!~uadub1ubdua!

2c2dngab, ~8!

wherec25dp/dn anddua•ua50. It is worth noting that the
transition to ordinary derivatives, that is, neglect of the affi
ity ~Cristoffel symbols! in the lower order, is mandatory fo
the WKB approximation. The affinity enters in the highe
order equations for ray propagation~see below!. The system
~6!–~8! with the corresponding Maxwell equations for th
field perturbation can be solved in the general case. Here
are interested in the strong magnetic-field approximat
where one can formally setB252BaBa→`. In this case,
the analysis simplifies greatly. One hasubFab5dubFab50
and it is easy to show that one can write

ua5g~Ua1vba!, dua5du~vUa1ba!, ~9!

where v5u/g and g2511u2. Strong magnetization often
means plasma anisotropy,p'Þpi , where' and i refer to
the magnetic-field direction. In pulsar magnetospheres,p'

50. It can be shown@10# that in this caseTab5euaub

1pib
abb andc25dpi /dn. Equation~6! immediately gives

dn52
n~Wv2K i!

g~W2K iv !
du, ~10!

where we introduced the notationW5kaUa, K i52kaba. It
is clear thatW andK i are the frequency and parallel comp
nent of the wave vector~with respect to the magnetic field!
in the locally inertial frame defined by the velocityUa. Sub-
stituting Eq.~10! into Eq. ~8! and further into Eq.~7!, one
gets after multiplication byUa ,

du52
iq~W2K iv !

n@m~W2K iv !22c2~Wv2K i!
2#

~UabbdFab!,

~11!

wherem5(e1p)/n. The obtaineddn anddu should be used
for the current calculation:d j a5(sq(dnsus

a1nsdus
a). We

introduce the 4-vector potentialAa such thatdFab5 i (kaAb

2kbAa) and we apply the Lorentz gaugekaAa50. Further
calculations are straightforward and after some not leng
algebra give the dispersion relation
1-2
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D~k!5kaka2~W22K i
2!

3(
s

4pqs
2ns

gs
2@ms~W2K ivs!

22cs
2~Wvs2K i!

2#

50 ~12!

for a wave polarized in theUa-ba plane: UaAaÞ0, baAa

Þ0. The other dispersion relation,kaka50, describes vacu
umlike waves polarized so thatUaAa5baAa50. The disper-
sion relation~12! looks exactly like the dispersion relation i
the flat space with the substitutionv→W, ki→K i . The met-
rics gab is hidden in the definition ofW andK i .

We proceed further to the derivation of general relativis
equations for ray propagation given the dispersion equa
in the formD(k,x), where the dependence onx includes the
~noninertial! effects of rotation. To this end, let us represen
wave packet in the form~see, e.g., Bernstein and Friedlan
@15#!

Ab5E Āb~k!exp~ ikbxb!Augud4k, ~13!

wherekb should satisfy the dispersion relationD(k,x)50.
Let us assume thatĀb has a sharp maximum atk5k0. Then
Eq. ~13! can be written as follows: Ab

5exp(ik0ax
a)*Āb(q)exp(iqax

a)Augud4q, where q5k2k0 is
small. Along the rayxa5xa(l), the phaseqaxa should be
stationary, so that the equation for the propagation of
maximum is obtained by differentiating the phase with
spect to the affine parameterl and equating to zero, which
givesqa(dxa/dl)50. On the other hand, expanding the d
persion relation neark0a , one hasqa(]D/]ka)50. Sinceqa
is arbitrary, one finds

dxa

dl
5

]D

]ka
, ~14!

where we used the freedom to choose the multiplier for
affine parameter. UsingdD/dl50 along the ray, one ha
(]D/]ka)(dka /dl)1(]D/]xa)(dxa/dl)50. After substi-
tuting Eq.~14!, we arrive at the second equation for the r
propagation in the following form:

dka

dl
52

]D

]xa
. ~15!

Affinity ~Cristoffel symbols! enters Eq.~15! implicitly via
partial derivatives of the terms containing metricsgab .
Equation~15! reproduces the ray equation in vacuumkbk;b

a

50 for D5gabkakb . Equations~14! and~15! are the gener-
ally covariant generalization of the well-known equations
geometrical optics in a dispersive medium with spatial a
temporal inhomogeneity@15#. Similar equations were given
by Breuer and Ehlers@9# and Ehlers and Prasanna@13# using
Hamiltonian interpretation ofD(k,x). The above derivation
shows in the most transparent way the relation of the
02740
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equations to the propagation of wave packets. For the fu
tional form of D given in Eq.~12!, one has

dxa

dl
52ka1

]D

]W
Ua2

]D

]K i
ba, ~16!

dka

dl
52D ,a2

]D

]W
kcU ,a

c 1
]D

]K i
kcb,a

c , ~17!

whereD ,a5]D/]xa with W andK i constant. In Eq.~17!, the
first term describes the effects of the plasma parameter in
mogeneity, the second term is due to the noninertiality of
frame ~it vanishes in the nonrotating observer’s frame! or
space-time curvature, and the last term is due to the cha
in the orientation of the magnetic field.

The polarization vector of the wave is determined by t
local wave dispersion theory at each point along the r
Equations for the wave amplitude transport are obtained
expanding the amplitudesdn, du, Aa, and the eikonalS in
powers of the small parameterh ~see, e.g., Breuer and Ehle
@9# and Bernstein and Friedland@15#!. We do not give them
here.

One important example of a system in which the abo
formalism may be applied is a pulsar magnetosphere.
t,r ,f,z be the cylindrical coordinates in the rotating~pulsar!
frame, andt8,r 8,f8,z8 be the corresponding coordinates
the nonrotating~observer’s! frame. The coordinate transfor
mation is t85t, r 85r , z85z, andf85f1Vt. The corre-
sponding metric tensor in the~noninertial! pulsar frame is
@14# gtt5(12V2r 2), gtf52Vr 2, gff52r 2, and grr
5gzz521, with the other components equal to zero. We u
this metric inside the light cylinderVr ,1. In the observer’s
frame, the field pattern is commonly assumed to be rigi
rotating @16# so that all plasma and field parameters depe
on f2Vt. As a result, the locally defined wave frequen
~in the observer’s frame! is not a constant of motion but is
function of t. Ray propagation may be treated in the inert
frame, taking into account the changes of the backgro
conditions witht. Alternatively, one may treat the propag
tion in the rotating frame, in which there is inhomogene
but no time dependence. While the two approaches
physically equivalent, the use of the rotating frame withv
5const along the ray is attractive, albeit at the expense
introducing a nontrivial metric tensor.

In the pulsar frame,Ua5(gtt
21/2,0,0,0) is a global timelike

velocity field, UaUa51. It can be shown that the corre
sponding Ea50, so that this velocity field satisfies th
‘‘magnetized plasma’’ conditions. Since the metric is tim
independent, perturbations have the form}exp@2ivt
1iS(r,f,z)#, with v5const. The local frequencies in the ob
server’s ~primed! and pulsar frames are related byv85v
2kfV, which is merely but the Doppler shift. Whilev is
constant along the ray sinceD is time-independent in the
pulsar frame,v8 should change with the change ofkf . In
order to see what might be the effect of the rotation, let
consider the low-frequency,W2!4pnq2/g3, Alfven wave.
In this case, Eq.~12! gives W25K i

2 for the Alfven wave,
which can be rewritten asv5k•bA12V2r 2. Thus,]v/]r
includes a term related to]Agtt/]r , in addition to those re-
1-3
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lated to the change of the magnetic-field directionb. In the
observer’s frame, this corresponds to a rotating magn
field, b5b(r ,t). If k5(v,kr ,kf,0), then using Eqs.~16! and
~17! one finally finds

df/dr5bf/br , dt/dr5U0/br , ~18!

dkr /dr52@WU,r
0 2K i~krb,r

r 1kfb,r
f!#/K ib

r ,

dkf /dr52~krb,r
r 1kfb,r

f!/br . ~19!

Equation~18! shows that the ray follows the field line in th
rotating frame. In the nonrotating frame because of the tim
dependent transformation, (df8/dr)5(bf2VU ,r

0 )/br . The
last term disappears whengtt51, that is, whenVr is ne-
glected. In the equation forkr , the effect of the noninertia
h.

m
J.

02740
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frame appears in the additional term (dkr /dr)add52U ,r
0 /br

52V2r /br(12V2r 2)3/2, which may be substantial. A de
tailed analysis of the ray propagation in the rotating fra
will be presented elsewhere.

To conclude, we provide a closed expression for the d
persion relation for low-frequency long-wavelength waves
a relativistic multifluid plasma in a strong magnetic field. W
also present a generally covariant form of the equations
geometrical optics for waves in an arbitrary dispersive m
dium and apply it to the magnetized plasma. We discus
particular application of the proposed theory to rapidly rot
ing systems such as pulsars.

This research was supported in part by the Israel Scie
Foundation under Grant No. 170/00-1, and in part by a gr
from the Australian Research Council.
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